For what value of k, (4−k)x2+(2k+4)x+(8k+1) is a perfect square
Open in App
Solution
The given equation is a perfect square if its discriminant is zero.
D=b2−4ac=0 ∴(2k+4)2−4(4−k)(8k+1)=0 ⇒4(k+2)2−4(4−k)(8k+1)=0 ⇒4[(k+2)2−(4−k)(8k+1)]=0 ⇒[(k2+4k+4)−(−8k2+31k+4)]=0⇒9k2−27k=0 ⇒9k(k−3)=0⇒k=0 or k=3 Hence, the given equation is a perfect square if k=0 or k=3