The given system of equations is:
x + 2y = 5
⇒ x + 2y − 5= 0 ...(i)
3x + ky + 15 = 0 ...(ii)
These equations are of the form:
a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0
where, a1 = 1, b1= 2, c1 = −5 and a2 = 3, b2 = k, c2 = 15
(i) For a unique solution, we must have:
, i.e.,
Thus, for all real values of k other than 6, the given system of equations will have a unique solution.
(ii) For the given system of equations to have no solutions, we must have:
Hence, the required value of k is 6.