12x2−10xy+2y2+11x−5y+λ=0For pair of straight line
ax2+2hxy+by2+2gx+2fy+c=0
⎡⎢⎣ahghbfgfc⎤⎥⎦=0
Here, $a=12,h=\cfrac=-{10}{2}=-5,b=2,g=\cfrac{11}{2}
,\cfrac=-{5}{2}& c=\lambda$
⎡⎢
⎢
⎢⎣12−5112−52−52112−52λ⎤⎥
⎥
⎥⎦=0
=12(12λ−254)+5(−5λ+554)+112(252−11)=0
or,12(8λ−25)−100λ+275+33=096λ−300−100λ+308=0or,−4x+8=0λ=2
Equation is
12x2−10xy+2y2+11x−5y+2=012x2−4xy+8x+2y2−6xy−4y+3x−y+2=04x(3x−y+2)−2y(−y+3x+2)+(4x−2y+1)=0
Two eqations are
3x−y+2=0×2→(1)4x−2y+1=0×1→(2)6x−2y+4=04x−2y+1=0−−−−−−−−2x+3=0x=−32
Putting value of x in (2)
4(−32)−2y+1=0−6−2y=1=0y=−52
So point of intersection is
(−32,52)y=3x=2 herem1=3m1=3y=4x+12&m2=42=2
So, angle between them
=tan−1(±m1−m21+m1m2)=tan−1(3−21+6)&tan−1(−3−21+6)=tan−1(17)&tan−1(−17)
and other angls are
=π−tan−1(17)&π−tan−1(−17)
Pair of angle bisector
a1x+b1y+c1√a21+b21=±a2x+b2y+c2√a22+b22
where equations are a1x+b1y+c1=0 & a2x+b2y+c2=0
So, 3x−y+2√32+12=±4x−2y+1√42+223x−y+2√10=±4x−2y+1√20
or, 3x−y+2=±4x−2y+1√2