For what value of λis the function f(x)={λ(x2−2x) if x≤04x+1, if x>0 continuous at x = 0? what about continuity at x = 1?
Here, f(x)={λ(x2−2x) if x≤04x+1, if x>0
At x = 0, LHL=limx→0−f(x)=limx→0−λ(x2−2x)
Putting x=0-h as x→0− when h→0−
∴limh→0λ[(0−h)2−2(0−h)]=limh→0[λ(h2+2h)]=0
RHL=limx→0−f(x)=limx→0−(4x+1)
Putting x=0-h as x→0+ when h→0
∴limh→0λ[4(0−h)+1]=limh→0[4h+1]=0+1=1
∴ LHL not= RHL.Thus, f(x)is not continuous at x=0 for any value of λ .
At x = 1, LHL=limx→0−f(x)=limx→0−λ(4x+1)
Putting x=0-h as x→1− when h→0
∴limh→0[4(1−h)+1]=limh→0[5−4h]=5+0=0
RHL=limx→1+f(x)=limx→1+(4x+1)
Putting x=1-h as x→1+ when h→0
∴limh→0[4(1−h)+1]=limh→0[5−4h]=5+0=5
Also, f(x)=4 × 1+1=5 [∴f(x)=4x+1]
Thus, f(x) is continuous at x=1 for all values of λ