Given : p(x)=(x2+5x+6)(x2+2x−a) and q(x)=(x2−x−2)(x2+7x+b) have HCF h(x)=(x+2)(x−2)∴x=−2,2 are the roots of both p(x) and q(x)
Now, x2+5x+6=x2+3x+2x+6=(x+3)(x+2) ....... (i)
Now, p(x)=(x2+5x+6)(x2+2x−a)=h(x)f(x), where f(x) is the factor of p(x)
⟹(x2+5x+6)(x2+2x−a)=(x+2)(x−2)f(x)
⟹(x+3)(x+2)(x2+2x−a)=(x+2)(x−2)f(x)
⟹(x+3)(x2+2x−a)=(x−2)f(x)
Take x=2
⟹(22+2×2−a)=0
⟹a=8 ..... (ii)
Also, q(x)=(x2−x−2)(x2+7x+b)=h(x)g(x), where g(x) is another factor of q(x)
⟹(x−2)(x+1)(x2+7x+b)=(x+2)(x−2)f(x)
⟹(x+1)(x2+7x+b)=(x+2)f(x)
Take x=−2
⟹((−2)2+7(−2)+b)=0
⟹4−14+b=0
⟹b=10
Hence, a=8 and b=10