First we arrange the system of linear equation in matrix form, i.e.,
AX=B
Where A=⎡⎢⎣11121−132k⎤⎥⎦; X=⎡⎢⎣xyz⎤⎥⎦; B=⎡⎢⎣234⎤⎥⎦
So for a unique solution |A|≠0
⇒ ∣∣
∣∣11121−132k∣∣
∣∣≠0
⇒1(k+2)−1(2k+3)+1(4−3)≠0
⇒k+2−2k−3+1≠0
⇒−k≠0
⇒k≠0
so for any value of k≠0 the given system of linear equation has a unique solution.