The correct option is B (119,∞)
Given quadratic equation x2−6mx+9m2−2m+2=0
Condition for both roots greater than a number k is D≥0,−b2a>k,af(k)>0
(i) Consider D≥0(−6m)2−4(9m2−2m+2)≥0
⇒8m−8≥0
⇒m≥1
⇒m∈[1,∞) .....(1)
(ii) Consider f(3)>0
1.(9−18m+19m2−2m+2)>0
⇒9m2−20m+11>0
⇒(9m−11)(m−1)>0
∴(m−119)(m−1)>0
⇒m∈(−∞,1)∪(119,∞).....(2)
(iii) Consider −b2a>3⇒6m2>3
m>1
⇒m∈(1,∞) .....(3)
Hence, from (1),(2),(3) m∈(119,∞)
Hence, option 'B' is correct.