The correct option is A p≠2,q≠3
Given equations are
2x+py+6z=8
x+2y+qz=5
x+y+3z=4
Here D=∣∣
∣∣2p612q113∣∣
∣∣
Applying R1→R1−2R3
=∣∣
∣∣0p−2012q113∣∣
∣∣
=−(p−2)∣∣∣1q13∣∣∣
=−(p−2)(3−q)
=(p−2)(q−3)
∴D1=∣∣
∣∣8p652q413∣∣
∣∣
Applying C1→C1−4C2 & C3→C3−3C2
D1=∣∣
∣∣8−4pp6−3p−32q−6010∣∣
∣∣
Expanding along R3, then
D1=(−1)∣∣∣8−4p6−3p−3q−6∣∣∣
=(−1){(8−4p)(q−6)+3(6−3p)}
=4(p−2)(q−6)+3(p−2)3
=(p−2)(4q−15)
and D2=∣∣
∣∣28615q143∣∣
∣∣
Applying R1→−2R3
=∣∣
∣∣00015q143∣∣
∣∣
=0
and D3=∣∣
∣∣2p8125114∣∣
∣∣
Applying R1→R1−2R3
∴D3=∣∣
∣∣0p−20125114∣∣
∣∣
Expanding along R1 then
D3=−(p−2)∣∣∣1514∣∣∣
D3=(2−p)
By Cramer's rule :
x=D1D,y=D2D,z=D3D
For unique solutions:
D≠0 and at least one of D1,D2,D3≠0
Δ≠0,p≠2,q≠3