wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For which of the following fucntions f(x), does the limxcf(x) does not exist?

A
f(x)=[[x]][2x1], c=3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)=[x]x, c=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f(x)={x}2{x}2, c=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f(x)=tan(sgnx)sgnx, c=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B f(x)=[x]x, c=1
C f(x)={x}2{x}2, c=0
Option A, f(x)=[[x]][2x1], c=3
LHL=limx3f(x)=limh0f(3h)=limh0[[3h]][2(3h)1]=limh0[2][52h]=24=2

RHL=limx3+f(x)=limh0f(3+h)=limh0[[3+h]][2(3+h)1]=limh0[3][5+2h]=35=2
Here, LHL=RHL, so limit exists.

Option B, f(x)=[x]x, c=1
LHL=limx1f(x)=limh0f(1h)=limh0[1h](1h)=limh001=1

RHL=limx1+f(x)=limh0f(1+h)=limh0[1+h](1+h)=limh011=0

Here,LHLRHL
Hence, limit does not exists.

Option C,f(x)={x}2{x}2, c=0
LHL=limx0f(x)=limh0f(h)=limh0{h}2{(h)}2=limh001=1

RHL=limx0+f(x)=limh0f(h)=limh0{h}2{h}2=limh010=1

Here,LHLRHL
Hence, the limit does not exist.

Option D, f(x)=tan(sgnx)sgnx
We know sgn{x}={1x<01x0

RHL=limx0+f(x)=limx0+tan(sgnx)sgnx=tan(1)1

LHL=limx0f(x)=limx0tan(sgnx)sgnx=tan(1)(1)=tan(1)1

Here, LHL=RHL, so limit exists.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon