The correct options are
B f(x)=[x]−x,
c=1 C f(x)={x}2−{−x}2,
c=0Option A, f(x)=[[x]]−[2x−1], c=3
LHL=limx→3−f(x)=limh→0f(3−h)=limh→0[[3−h]]−[2(3−h)−1]=limh→0[2]−[5−2h]=2−4=−2
RHL=limx→3+f(x)=limh→0f(3+h)=limh→0[[3+h]]−[2(3+h)−1]=limh→0[3]−[5+2h]=3−5=−2
Here, LHL=RHL, so limit exists.
Option B, f(x)=[x]−x, c=1
LHL=limx→1−f(x)=limh→0f(1−h)=limh→0[1−h]−(1−h)=limh→00−1=−1
RHL=limx→1+f(x)=limh→0f(1+h)=limh→0[1+h]−(1+h)=limh→01−1=0
Here,LHL≠RHL
Hence, limit does not exists.
Option C,f(x)={x}2−{−x}2, c=0
LHL=limx→0−f(x)=limh→0f(−h)=limh→0{−h}2−{−(−h)}2=limh→00−1=−1
RHL=limx→0+f(x)=limh→0f(h)=limh→0{h}2−{−h}2=limh→01−0=1
Here,LHL≠RHL
Hence, the limit does not exist.
Option D, f(x)=tan(sgnx)sgnx
We know sgn{x}={−1x<01x≥0
RHL=limx→0+f(x)=limx→0+tan(sgnx)sgnx=tan(1)1
LHL=limx→0−f(x)=limx→0−tan(sgnx)sgnx=tan(−1)(−1)=tan(1)1
Here, LHL=RHL, so limit exists.