For which values of p and q, will the following pair of linear equations have infinitely many solutions? 4x + 5y = 2 , (2p + 7q) x + (p + 8q) y = 2q-p + 1
let4x+5y=2
4x+5y−2=0.......(i)
and(2p+7q)x+(p+8q)y=2q−p+1
(2p+7q)x+(p+8q)y−(2q−p+1)=0.......(ii)
Nowforinfinetelymanysolutions
a1a2=b1b2=c1c2 ∴4(2p+7q)=5(p+8q)=−2−(2q−p+1)
(i)4(p+8q)=5(2p+7q)
4p+32q=10p+35q
6p+3q=0
2p+q=0......(a)
(ii)5(2p−q+1)=2(p+8q)
10p−5q+5=2p+16q
8p−21q+5=0......(b)
fromeqn(a),q=−2p,substitutinf′q′ineqn(b)
8p−21(−2p)+5=0
8p+42P+5=0
50p=−5
⇒p=−110
nowq=−2p
=−2(−1)10=15
∴p=−110andq=15