For x>0, if f(x)=∫x1loget(1+t)dt then f(e)+f(1e) is equal to:
A
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12 f(e)+f(1e)=∫e1lnt1+tdt+∫1/e1lnt1+tdt=l1+l2 I2=∫1e1lnt1+tdt
Put t=1z⇒dt=−dzz2 I2=∫e1−lnz1+1z×(−dzz2)=∫e1lnzz(z+1)dz=∫e1lntt(t+1)dt
∴f(e)+f(1e)=∫e1lnt1+tdt+∫e1lntt(t+1)dt =∫e1lnttdt
let lnt=u⇒1tdt=du =∫10udu=u22∣∣∣10=12