For x>0,limx→0sinx1x+1xsinx=
0
-1
1
2
Find the value of limx→0sinx1x+1xsinx
According to question
For x>0,
∴limx→0(sinx)1/x+limx→0(1x)sinx=elimx→0logsinxx+elimx→0(-logxcosecx)
=e-∞+elimx→0(-1x-cosecx*cotx) ∵x>0,logsinx=-∞
=0+elimx→0(tanxx*sinx) ∵e-∞=0
=e0 ∵sin0=0
=1
Hence, Option ‘C’ is Correct.