No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
log(1+x)<x1+x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
log(1+x)≥x1+x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
log(1+x)>x1+x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dlog(1+x)>x1+x Let f(x)=log(1+x)−x1+x
Differentiating the above w.r.t. x f′(x)=11+x−(1+x)⋅1−x⋅(0+1)(1+x)2 ⇒f′(x)=11+x−1(1+x)2 ⇒f′(x)=x(1+x)2>0∀x>0 ∴f(x) is increasing.
and f(0)=log(1+0)−01+0=0
Since x>0⇒f(x)>f(0) ⇒f(x)>0 ⇒log(1+x)−x1+x>0 ∴log(1+x)>x1+x