For (|x-1|)(x+2)-1<0, x lies in the interval
(-ā,ā2)āŖ(-12,ā)
(-ā,1)āŖ(2,3)
(-ā,ā4)
(-12,1)
Step1: When xā1<0,then
Given, (|x-1|)(x+2)-1<0
ā (1-x)(x+2)-1<0
ā(1-x)-(x+2)(x+2)<0
ā -2x-1x+2<0
ā 2x+1x+2>0
Now,
x+2>0
ā x<-2
ā2x+1>0
ā x>-12
Examining the expression 2x+1x+2>0
When xā(āā,ā2);xā(ā1/2,ā)here x<1
ā“xā(-ā,ā2)āŖ(ā(1/2),1)ā(1)
Step 2: When xā„1,|xā1|=xā1
x-1(x+2)-1<0
ā(x-1)-(x+2)(x+2)<0
ā -3(x+2)<0
ā x+2<0
ā x>-2
But xā„1
ā“xā[1,ā)-(2)
Step 3. Combining equation (1) and (2) , we get
xā(-ā,ā2)āŖ(ā(1/2),ā)
Hence, option āAā is correct .