The correct option is D [1,∞)
x2−(a+3)|x|+4=0
Let |x|=t>0
Then, t2−(a+3)t+4=0 ⋯(1)
For real solutions,
D≥0
⇒(a+3)2−42≥0
⇒(a+3+4)(a+3−4)≥0
⇒(a+7)(a−1)≥0
⇒a∈(−∞,−7]∪[1,∞)
Also, since eqn (1) has positive roots, sum of roots is positive.
i.e., a+3>0
⇒a>−3 ⋯(2)
From (1) and (2),
a∈[1,∞)
Alternate:
a=x2+4|x|−3
=|x|+4|x|−3
≥2√|x|⋅4|x|−3 (∵A.M.≥G.M.)
=4−3=1
⇒a≥1