For x,a>0 the root(s) of the equation logaxa+logaxa2+loga2xa3=0 is (are) given by
Simplifying logaxa+logaxa2+loga2xa3=0
logaxa+2logaxa+3loga2xa=0
1logaax+2logaax+3logaa2x=0
1logaa+logax+2logaa+logax+3logaa2+logax=0
11+logax+21+logax+32logaa+logax=0
11+logax+21+logax+32(1)+logax=0
Put logax=t, then,
11+t+21+t+32+t=0
(2+t)+2(2+t)+3(1+t)(1+t)(2+t)=0
2+t+4+2t+3+3t=0
6t+9=0
t=−32
logax=−32
x=a−32