For x,a>0 the root(s) of the equation logaxa+logxa2+loga2xa3=0 is (are) given by
Simplifying logaxa+logxa2+loga2xa3=0.
logaxa+2logxa+3loga2xa=0
1logaax+2logax+3logaa2x=0
1logaa+logax+2logax+3logaa2+logax=0
11+logax+2logax+32logaa+logax=0
11+logax+2logax+32(1)+logax=0
11+logax+2logax+32+logax=0
Put logax=y,
11+y+2y+32+y=0
y(2+y)+2(1+y)(2+y)+3y(1+y)y(1+y)(2+y)=0
2y+y2+2(y2+3y+2)+3y+3y2=0
2y+y2+2y2+6y+4+3y+3y2=0
6y2+11y+4=0
y=−11±√(11)2−4(6)(4)2(6)
y=−11±512
y=−612,−1612
y=−12,−43
logax=−12
x=a−1/2
And,
logax=−43
x=a−4/3
Therefore, the roots are x=a−1/2 and x=a−4/3.