For xϵR,f(x)=|log2−sin x| and g(x)=f(f(x)) then:
g’(0) = cos(log 2)
g’(0) = -cos(log 2)
g is differentiable at x = 0 and g’ (0) = -sin(log 2)
g is not differentiable at x = 0
g(x) =f(f (x)) = | log2 - sin | log2 - sin x ||
g(x) = f(f(x)) = log2 – sin(log2 – sinx)
g’(x) = -cos(log2 – sinx).(– cosx)
g’ (0) = cos(log2)