For x≥0, the minimum value of f(x)=ln(1+x)−x+x22 is
Open in App
Solution
Given : f(x)=ln(1+x)−x+x22
Differentiating the above w.r.t. x ⇒f′(x)=11+x−1+x ⇒f′(x)=x21+x≥0∀x≥0 ⇒f(x) is an increasing function ∀x≥0
And f(0)=ln(1+0)−0+022=0
Since x≥0⇒f(x)≥f(0) ⇒f(x)≥0
So, the minimum value of f(x) is 0.