wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For x>0, define
A=⎢ ⎢ ⎢x+1x000x00016⎥ ⎥ ⎥,

B=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢5xx2+10003x00014⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

Let X=(AB)1+(AB)2++(AB)nY=limnXZ=Y12I
where I is an identity matrix of order 3.

Column I Column II (A) The minimum value of [ trace (AY) ] is{[.] represents the greatest integer function} (P) 24(B) The value of det(Y1) is(Q) 12(C) If trace (Z+Z2+Z3++Z10)=2a+b(a,bN), then a+b is equal to(R) 6(D) If |adj(5Y1)|=k, then the number of odd positive divisors of k is (S) 19


Note: Trace of a square matrix is the sum of the diagonal elements.

Which of the following is the INCORRECT combination?

A
(C)(S)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(D)(Q)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(C)(R)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(B)(P)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C (C)(R)
A=⎢ ⎢ ⎢x+1x000x00016⎥ ⎥ ⎥

B=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢5xx2+10003x00014⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

AB=500030004(AB)1=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢150001300014⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥(AB)2=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢152000132000142⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥(AB)n=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢15n00013n00014n⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

X=(AB)1+(AB)2++(AB)nX=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢15+152++15n00013+132++13n00014+142++14n⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

Y=limxXY=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢140001200013⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥Y1=400020003

Z=Y12IZ=200000001

(A)
AY=⎢ ⎢ ⎢x+1x000x00016⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢140001200013⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥AY=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢x2+14x000x2000163⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

trace (AY)=x2+14x+x2+163
Let y=x2+14x+x2+163
y=3x4+14x+163y=3414x2y′′=24x3

For minima,
y=0x=±13
Rejecting the negative value, so for x=13
y′′>0
Therefore, x=13 is a minima point,
y=163+32
The minimum of [ trace (AY)]=6
(A)(R)

(B)
Y1=400020003

det(Y1)=24
(B)(P)

(C)
Z=200000001Z2=2200000001Z10=21000000001 trace(Z+Z2+Z3++Z10) =(2+1)+(22+1)++(210+1) =2(2101)21+10=211+82a+b=211+8a+b=19
(C)(S)

(D)
Y1=4000200035Y1=⎢ ⎢450002500035⎥ ⎥

We know that
|adj Y|=|Y|n1|adj 5Y1|=|5Y1|2|adj 5Y1|=(45×25×35)2k=26×32×53

Number of odd divisors of k,
=(2+1)(3+1)=12
(D)(Q)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon