For x∈(0,π), the equation sinx+2sin2x−sin3x=3, has
sinx+2sin2x−sin3x=3
sinx+4sinxcosx−3sinx+4sin3x=3
sinx[−2+4cosx+4(1−cos2x)]=3
sinx[2−(4cos2x−4cosx+1)+1]=3
sinx[3−(2cosx−1)2]=3
⇒sinx=1 and 2cosx−1=0
⇒x=π2 and x=π3
Which is not possible at same time.
Hence, no solution.