The correct option is D no solution
sinx+2sin2x−sin3x=3⇒sinx+4sinxcosx−3sinx+4sin3x=3⇒1+4cosx−3+4sin2x=3sinx⇒4−4cos2x+4cosx−2=3sinx⇒2+1−(4cos2x−4cosx+1)=3sinx⇒3−(2cosx−1)2=3sinx⇒−(2cosx−1)2=3sinx−3
We know that,
LHS=−(2cosx−1)2≤0
RHS=3sinx−3≥0
They will be equal when,
2cosx−1=0⇒x=π3
3sinx−3=0⇒x=π2
As the both give different value of x,
Therefore, the given equation has no solution.