For x∈(0,32), let f(x)=√x,g(x)=tanx and h(x)=1−x21+x2. If ϕ(x)=((hof)og)(x), then ϕ(π3) is equal to
A
tan(π12)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tan(5π12)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan(7π12)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tan(11π12)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dtan(11π12) f(x)=√x…(I) g(x)=tanx…(II) h(x)=1−x21+x2…(III) for x∈(0,32) Also, ϕ(x)=((hof)og)(x)=h(f(g(x))) =h(f(tanx))=h(√tanx) =1−(√tanx)21+(√tanx)2=1−tanx1+tanx