The correct option is D a<b<c
Let y=(x−a)(x−c)x−b
⇒xy−by=x2−(a+c)x+ac
⇒x2−(a+c+y)x+(ac+by)=0
∵x∈R−{b}⇒D≥0
⇒(a+c+y)2−4(ac+by)≥0⇒y2+2(a+c−2b)y+(a−c)2≥0
∵y∈R and Coefficient of y2>0,
So, D≤0
⇒4(a+c−2b)2−4(a−c)2≤0⇒(a+c−2b)2−(a−c)2≤0⇒(a+c−2b+a−c)(a+c−2b−a+c)≤0⇒(2a−2b)(2c−2b)≤0⇒(b−a)(b−c)≤0⇒a≤b≤c or a≥b≥c
When a=b=c, so
y=(x−b)(x−b)(x−b)=x−b
As x≠b, so y≠0
Therefore, y can't take all R
Hence,
a<b<c or a>b>c