Given:
3x2−4|x2−1|+x−1=0
Case 1: x2−1<0⇒x∈(−1,1)
∴3x2+4(x2−1)+x−1=0
⇒7x2+x−5=0
⇒x=−1±√14114
⇒x=−1−√14114,−1+√14114
Both roots lie in (−1,1)
Case 2: x2−1≥0⇒x∈(−∞,−1]∪[1,∞)
∴3x2−4(x2−1)+x−1=0
⇒x2−x−3=0
⇒x=1±√132
⇒x=1−√132,1+√132
Both roots lie in (−∞,−1]∪[1,∞)
Hence, total number of solutions =4