For x∈R,x≠−1(1+x)2016+x(1+x)2015+x2(1+x)2014+.....+x2016=∑2016i=0aixi, then a17 is equal to
Given:
2016∑i=0aixi=(1+x)2016+x(1+x)2015+x2(1+x)2014+................+x2016
Using formula,
∑i=0aixi=(1+x)n+x(1+x)n−1+x2(1+x)n−2+x3(1+x)n−3+............+xn
∑i=0aixi= (1+x)n(1−(x1+x)n+1)1−x1+x $$
2016∑i=0aixi=(1+x)2016(1−(x1+x)2017)1−x1+x
=(1+x)20161−x2017(1+x)1+x−x1+x
=(1+x)2017−x20171
=(1+x)2017−x2017
Then, Value of a17=?
We know that,
ar=nCr=n!(n−r)!r!
Then
a17=2017C17
a17=2017C17=2017!(2017−17)!17!=2017!2000!×17!
Hence, this is the required value.