wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For xR,x1(1+x)2016+x(1+x)2015+x2(1+x)2014+.....+x2016=2016i=0aixi, then a17 is equal to

A
2017!17! 2000!
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2016!17! 1999!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2017!2000!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2016!16!
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 2017!17! 2000!

Given:

2016i=0aixi=(1+x)2016+x(1+x)2015+x2(1+x)2014+................+x2016

Using formula,

i=0aixi=(1+x)n+x(1+x)n1+x2(1+x)n2+x3(1+x)n3+............+xn

i=0aixi= (1+x)n(1(x1+x)n+1)1x1+x $$

2016i=0aixi=(1+x)2016(1(x1+x)2017)1x1+x

=(1+x)20161x2017(1+x)1+xx1+x

=(1+x)2017x20171

=(1+x)2017x2017

Then, Value of a17=?

We know that,

ar=nCr=n!(nr)!r!

Then

a17=2017C17

a17=2017C17=2017!(201717)!17!=2017!2000!×17!

Hence, this is the required value.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
(a ± b ± c)²
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon