32x−y+1=3y−2x+1−8
Let 32x−y=t
Then, 3t=3t−8
⇒3t2+8t−3=0
⇒t=13 or t=−3 (rejected)
Therefore, 32x−y=t=3−1
⇒2x−y=−1 ⋯(1)
Also, log6∣∣2x2y−xy2∣∣=1+log36(xy)
⇒log6|xy(2x−y)|=1+log6√xy
⇒log6|xy|=log6(6√xy)
⇒xy=36 ⋯(2)
On solving (1) and (2), we get
x=4 and y=9
∴|x−y|=5