wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For x,y,z>0 and x>m,y>n,z>r, if ∣ ∣xnrmyrmnz∣ ∣=0, then the greatest value of 27xyz(xm)(yn)(zr) is

Open in App
Solution

Given: ∣ ∣xnrmyrmnz∣ ∣=0
Applying R1R1R2 and R2R2R3
∣ ∣xmny00ynrzmnz∣ ∣=0

(xm)(yn)z+n(xm)(zr)+m(ny)(rz)=0
mxm+nyn+zzr=0
xxm+yyn+zzr=2

Let xxm,yyn and zzr be three positive numbers.
Now, A.M.G.M.
xxm+yyn+zzr3(xyz(xm)(yn)(zr))1/3
xyz(xm)(yn)(zr)(23)3
27xyz(xm)(yn)(zr)8
Hence, the greatest value of 27xyz(xm)(yn)(zr) is 8

flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon