For x, y, z ϵ(0,π2), let x, y, z be first three consecutive terms of an arithmetic progression such that cos x + cox y + cos z = 1 and sin x + sin y + sin z = 1√2, then which of the following is/are correct?
cot y=√2
sin (x−y)+sin(z−y)=0
We have y - d = x, y, y + d = z in AP
Now ∑ cos x = 1 ⇒ cos (y - d) + cos y + cos (y + d) = 1 ⇒ cos y(2 cos d + 1) = 1 .....(1)
Also, ∑sinx=1√2⇒sin(y−d)+sin y+sin(y+d)=1√2⇒ sin y(2 cos d+1)=1√2 .....(2)
∴Equation(1)Equation(2)⇒ cot y=√2
Now, putting cos y=√2√3 in (1), we get
2 cos d + 1 = √2√3⇒ cos d=√3−√22√2=cos(y−x)=cos(x−y)
Also, tan 2y = 2 tan y1−tan2 y=2×1√21−12=√212=2√2
Clearty, sin (x-y) + sin(z-y) = sin(-d) + sin d = 0.