The correct option is
B |Z1|4+|Z2|4=|Z3|−8z1=√1−i1+i√3,z2=√1−i√3+i,z3=√1+i√3−1
z1=6√1−i1+√3=6√(1−i)(1−i√3)1+3=6√1(1−√3)−i(1+√3)4
|z1|2=z1¯z1=6√(1−√3)4×6√(1−√3)+i(1+√3)4
|z1|2=6√(1−√3)2+(1+√3)216
|z1|2=6√816=1(2)1/6
z2=6√1−i√3+i=6√(1−i)(√3−i)(3+1)=6√(√3−1)−i(1+√3)4
|z2|2=z2¯z2=6√(√3−1)−i(1+√3)+i(1+√3)4
|z2|2=6√(√3−1)2+(1+√3)216=√816=1(2)1/6
z3=z3¯z3=6√(√3−1)+(1+√3)4×(√3−1)−i(1+√3)4
=6√(√3−1)2+(1+√3)216=√816=1(2)1/6
|z1|4=122/6|z2|4=122/6
|z3|8=124/6 ⇒ |z3|−8=24/6
⇒ |z1|4+|z2|4=122/6+122/6=222/6=24/6
=|z3|−8
so, |z1|4+|z2|4=|z3|−8 as
so, option (B) is right.