The correct option is A sin2nθ2nsinθ
We know that 2sinθcosθ=sin2θ
a=cosθcos2θcos4θcos8θ........cos(2n−1)θ
⇒a=2n−1(2cosθsinθ)cos2θcos4θcos8θ........cos(2n−1)θ2nsinθ
⇒a=2n−2(2cos2θsin2θ)cos4θcos8θ........cos(2n−1)θ2nsinθ
⇒a=2sin(2n−1)θcos(2n−1)θ2nsinθ=sin2nθ2nsinθ
Hence, option 'A' is correct.