let dydx=y′andd2ydx2=y"
Let the curve
y2=a(b2−x2)
Differentiating both sides w.r.t. x
we get,
2y.dydx=0−2ax
2yy′=−2ax
yy′=−ax
a=−yy′−x
Now,
yy′=−ax
Again, differentiating both sides w.r.t. x
we get,
Product rule(uv)′=u′v+uv′
dydx.y′+y.d(y′)dx=−adxdx
y′×y′+y×y"=−a
y′2+yy"=−(−yxy′)
y′2+yy"=yy′x
xy′2+xyy"=yy′
xy′2+xyy"=yy′
xy′2+xyy"−yy′=0
Final Answer:
Hence, the required differential equation is
xy′2+xyy"−yy′=0