wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b
y=e2x(a+bx)

Open in App
Solution

let

dydx=y and d2ydx2=y

Let the curve

y=e2x(a+bx)

Differentiating both sides w.r.t. x
we get,

y=ddx[e2x[a+bx]]

Product rule (uv)=uv+uv

y=d[e2x]dx.[a+bx]+e2xd[a+bx]dx

y=2e2x[a+bx]+e2x.b

y=e2x[2a+2bx+b]

Again, differentiating both sides w.r.t. x
we get,
Product rule, (uv)=uv+uv

y"=d(e2x)dx[2a+2bx+b]+e2xd[2a+2bx+b]dx

y"=2e2x[2a+2bx+b]+e2x×2b

Putting y=e2x[2a+2bx+b]

y"=2y+2e2xb

y"2y=2e2xb (i)

Also,

y2y

=e2x[2a+2bx+b]2e2x(a+bx)y2y

=2ae2x+2bxe2x+e2xb2ae2x2bxe2x

y2y=(2ae2x2ae2x)+(2bxe2x2bxe2x)+e2xb

y2y=0+0+e2xb

y2y=e2xb

Now (𝑖) divided by (𝑖𝑖) then we get,

y"2yy2y=2e2xbe2xb

y"2yy2y=2

y"2y=2(y2y)

y"2y=2y4y

y2y2y+4y=0

y4y+4y=0

Final Answer:
Hence, the required differential equation is

y"4y+4y=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon