let
dydx=y′ and d2ydx2=y′
Let the curve
y=e2x(a+bx)
Differentiating both sides w.r.t. x
we get,
y′=ddx[e2x[a+bx]]
Product rule (uv)′=u′v+uv′
y′=d[e2x]dx.[a+bx]+e2xd[a+bx]dx
y′=2e2x[a+bx]+e2x.b
y′=e2x[2a+2bx+b]
Again, differentiating both sides w.r.t. x
we get,
Product rule, (uv)′=u′v+uv′
y"=d(e2x)dx[2a+2bx+b]+e2xd[2a+2bx+b]dx
y"=2e2x[2a+2bx+b]+e2x×2b
Putting y′=e2x[2a+2bx+b]
y"=2y′+2e2xb
y"−2y′=2e2xb (i)
Also,
y′−2y
=e2x[2a+2bx+b]−2e2x(a+bx)y′−2y
=2ae2x+2bxe2x+e2xb−2ae2x−2bxe2x
y′−2y=(2ae2x−2ae2x)+(2bxe2x−2bxe2x)+e2xb
y′−2y=0+0+e2xb
y′−2y=e2xb
Now (𝑖) divided by (𝑖𝑖) then we get,
y"−2yy′−2y=2e2xbe2xb
y"−2y′y′−2y=2
y"−2y′=2(y′−2y)
y"−2y′=2y′−4y
y′−2y′−2y′+4y=0
y′−4y′+4y=0
Final Answer:
Hence, the required differential equation is
y"−4y′+4y=0