let
dydx=y′andd2ydx2=y"
y=ae3x+be−2x
differentiating both sides w.r.t. x
we get,
dydx=ddx[ae3x+be−2x]
dydx=ae3x×3+be−2x×(−2)
y′=3ae3x−2be−2x (i)
Again, differentiating both sides w.r.t. x
we get,
y"=ddx[3ae3x−2be−2x]
y"=3ae3x(3)−2be−2x(−2)
y"=9ae3x+4be−2x (ii)
Subtracting (ii) From (i)
y"−y′
=9ae3x+4be−2x−3ae3x+2be−2x
y"−y′=6ae3x+6be−2x
y′−y′=6(ae3x+be2x)
Putting
y=ae3x+be−2x
y"−y′=6y
y"−y′−6y=0
Final Answer:
Hence, the required differential equation is
y"−y′−6y=0