We first add the expressions
x2−5xy+2y2 and
y2−2xy−3x2. And then, we add
6x2−8xy−y2 and
2xy−2y2−x2 as shown below:
(x2−5xy+2y2)+(y2−2xy−3x2)=x2−5xy+2y2+y2−2xy−3x2=(x2−3x2)+(2y2+y2)+(−5xy−2xy)(Combiningliketerms)=−2x2+3y2−7xy....(1)
(6x2−8xy−y2)+(2xy−2y2−x2)=6x2−8xy−y2+2xy−2y2−x2=(6x2−x2)+(−y2−2y2)+(−8xy+2xy)(Combiningliketerms)=5x2−3y2−6xy....(2)
Now, as per the question, we subtract equation 1 from equation 2 and equate it to ax2+bxy+cy2 as follows:
(5x2−3y2−6xy)−(−2x2+3y2−7xy)=ax2+bxy+cy2=5x2−3y2−6xy+2x2−3y2+7xy=ax2+bxy+cy2=(5x2+2x2)+(−3y2−3y2)+(−6xy+7xy)=ax2+bxy+cy2(Combiningliketerms)=7x2−6y2+xy=ax2+bxy+cy2⇒a=7,b=1,c=−6(Bycomparingcoefficientsofx2,y2andxy)
Now, adding a+b+c, we get:
a+b+c=7+1−6=8−6=2
Hence, a+b+c=2.