xy=ax2+bx,(a,b)⇒x2y=ax3+bdifferentiatew.r.to.x→d(x2y)dx=adx3dx+dbdx⇒x2dydx+ydx2dx=3ax2+0⇒xdy/dx+2xy=3ax2⇒xx2dy/dx+2xyx23a⇒1xdy/dx+2yx=3aagaindifferentiatew.r.tox[x⋅d(dy/dx)dx−dy/dx]×1x2+2[xdy/dx−ydxdx]=0xd2y/dx2−dy/dxx2+2xdy/dx−2yx2=0xd2y/dx2−dy/dx+2xdy/dx+y=0xd2y/dx2+dy/dx(x−1)−2y=0Itisrequireddifferentiateequations.Ans.