y=ax2+bx(a,b)(a,b)twoconstantsthen,requireddifferentialequationsareinsecondorderyx=ax+bdifferentiatew.rtox⇒d(y/x)dx=adxdx+dbdx⇒xdy/dx−ydxdxx2=a+0⇒xdy/dxx2−yx2=0⇒dy/dxx−y/x2=aagaindifferentiatew.r.tox⇒x⋅ddx(dy/dx)−dy/dx(dxdx)x2−⎡⎢⎣x2dy/dx−ydx2dx⎤⎥⎦x4=0x⋅d2y/dx2−dy/dxx2−x2dy/dx+yx4=0xd2y/dx2−dy/dx−x2dy/dxx2+yx2=0xd2y/dx2−dy/dx−dy/dx+yx2=0xd2y/dx2−2dy/dx+y/x2=0requireddifferentialequation.Ans.