Form the differential equation corresponding to y=(sin−1x)2+Acos−1x+B where A, B are arbitrary constants.
Open in App
Solution
Let y=(sin−1)2+Acos−1x+B so, dydx=2sin−1x−1√1−x2+A×−1√1−x2+0 dydx=2sin−1x√1−x2−A√1−x2 ⇒√1−x2dydx=2sin−1x−A Again differenttating we get- √1−x2d2ydx2+dydx−12√1−x2−2x=2√1−x2 ⇒√1−x2d2ydx2−x√1−x2dydx=2√1−x2 (1−x2)d2ydx2−xdydx=2