According to question the given curve is
Since the circle touches the \(x\)-axis at origin.
So, the centre will lie on the \(y\)-axis. So, \(x\)-coordinate of center is \(0\) i.e., \(a=0\)
Centre =\((0,b)\) and radius \(=b\)
Let
\(\dfrac{dy}{dx}=y'\)
So, Equation of Circle
\((x-0)^2+(y-b)^2=b^2\)
\(x^2+(y-b)^2=b^2\)
\(x^2+y^2-2yb+b^2=b^2\)
\(x^2=Y^2-2yb=0\)
\(x^2+y^2=2yb\)
Differentiating both sides w.r.t. x
we get,
\(2x+2y\dfrac{dy}{dx}=2b.\dfrac{dy}{dx}\)
\(x+yy'=b.y'\)
\(\left[\dfrac{x+yy'}{y'}\right]=b\)
\(x^2+y^2=2yb\)
putting
\(b=\left[\dfrac{x+yy'}{y'}\right]\)
\(x^2+y^2=2y\left[\dfrac{x+yy'}{y'}\right],\)
\((x^2+y^2)y'=2y(x+yy')\)
\((x^2+y^2)y'=2yx+2y^2y'\)
\(x^2y'+y^2y'=2yx+2y^2y'\)
\(x^2y'+y^2y'-2y^2y'=2yx\)
\(x^2y'-y^2y'=2yx\)
\(y'(x^2-y^2)=2xy\)
\(y'=\dfrac{2xy}{x^2-y^2}\)
Final Answer:
Hence, the required differential equation is
\(y'=\dfrac{2xy}{x^2-y^2}\)