We have,
(x−a)2+2y2=a2......(1)
On differentiation with respect to x and we get,
ddx[(x−a)2+2y2]=ddxa2
2(x−a)+4ydydx=0
(x−a)+2ydydx=0
ydydx=a−x2
a=2ydydx+x
Put the value of a in equation (1) and we get,
[x−(2ydy/dx+x)]2+2y2=(2ydydx+x)2
[x−2ydydx−x]2+2y2=(2ydydx+x)2
(−2ydydx)2+2y2=4y2(dydx)2+x2+4xydydx
2y2=x2+4xydydx
2y2−x2−4xydydx=0
2y2−x2=4xydydx
4xydydx=2y2−x2
dydx=2y2−x24xy
Hence, this is the answer.