wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Form the differential equation of the family of curves represented by the equation : (x+a)22y2=a2.

Open in App
Solution

We have,

(xa)2+2y2=a2......(1)

On differentiation with respect to x and we get,

ddx[(xa)2+2y2]=ddxa2

2(xa)+4ydydx=0

(xa)+2ydydx=0

ydydx=ax2

a=2ydydx+x

Put the value of a in equation (1) and we get,

[x(2ydy/dx+x)]2+2y2=(2ydydx+x)2

[x2ydydxx]2+2y2=(2ydydx+x)2

(2ydydx)2+2y2=4y2(dydx)2+x2+4xydydx

2y2=x2+4xydydx

2y2x24xydydx=0

2y2x2=4xydydx

4xydydx=2y2x2

dydx=2y2x24xy

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon