f(x)=ex+1ex−1
For domain, ex−1≠0⇒ x≠0
∴n(d)=number of integers not in domain=1
Let y=ex+1ex−1
⇒exy−y=ex+1
⇒ex=y+1y−1
We know that ex>0
⇒y+1y−1>0⇒y∈(−∞,−1)∪(1,∞)
Hence the range is (−∞,−1)∪(1,∞)
So, n(r)=Number of integers which are not in range=3 i.e, {−1,0,1}
∴n(d)+n(r)=4