Let X denotes the random variable. Then X can take values 0, 1, 2.
The probability distribution is as follow :
X012P(X)16C220C2=60954C1 16C120C2=32954C220C2=395
Now mean, μ=∑XP(X)=0+3295+695=3895=25.
Variance, δ2=∑X2P(X)−μ2=0+3295+1295=4495−425=144475.