Four distinct points (2K,3K),(1,0),(0,1) and (0,0) lie on a circle when
Let A = (0,0) , B(0,1) , C(2k,3k) , D(1,0)
As we can see
AD⊥AB
∠A=90
∠C=90
⟹mBC×mDC=−1
3k−12k×3k2k−1=−1
⟹k(9k−3)=−(4k−2)k
k=0,9k+4k=2+3⟹13k=5⟹k=513
But if k=0, C will be (0,0) which is A
k=513 only one point.