q=10μC=10−6Cq0=0.1μC=10−7Cm=6×10−4kgQ=8μC=8×10−6CLet P be any point at a distance x from origin, then
AP=CPBP=DP
Electric potential at P will be
V=2kQBP−2kqAP,where k=14πϵ0V=2k⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣Q(272+x2)12−q(32+x2)12⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
V=2×9×109×10−6⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣8(272+x2)12−x(32+x2)12⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
Electric field at P is
E=−dVdx=−1.8×104⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣8×(−12)×2x(272+x2)32+122x(32+x2)32⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦E=1.8×104⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣8x(272+x2)32−x(32+x2)32⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
E=0 at
8x(272+x2)32=x(32+x2)32⟹4(272+x2)=1(32+x2)⟹4×32+4x2=272+x2⟹3x2=27−22=152⟹x=±√52
The least value of kinetic energy of the particle at infinity should be enough to take the particle upto x=+√52 beacause
at x=+√52,E=0 Electrostatic force on q0 is zero
for x>√52,E is repulsive (towards +ve x-axis)
for x<√52,E is attractive (towards -ve x-axis)
Now potential at √52m is
V=1.8×104⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣8(272+52)12−x(32+52)12⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦V=1.8×104×32⟹V=2.7×104V
Applying energy conservation at x=∞ and x=√52m
12mν20=q0V⟹ν0=√2q0Vm⟹ν0=√2×10−7×2.7×1046×10−4=3m/s
Hence, minimum value of ν0=3m/s
Potential at origin is
V0=1.8×104⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣8(272)12−x(32)12⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦⟹V−0=1.8×104⎡⎢
⎢
⎢
⎢⎣83√32−1√32⎤⎥
⎥
⎥
⎥⎦⟹V0=1.8×104×√23×53⟹V0=√6×104≈2.44×104
Let T be the kinetic energy of the particle at origin .
Applying energy conservation at x=0 and at x=∞
T+q0V−0=mV20⟹T=12mV20−q0V0⟹T=12×6×10−4×32−2.44×104×10−7⟹T=27×10−4−2.44×10−4⟹T=2.6×10−4J