Four points A,B,C and D lie in the order on the parabola y=ax2+bx+c and the coordinates of A, B and D are known A(-2,3); B(-1,1); D(2,7). On the basis of above information match the following :
Open in App
Solution
Given, y=ax2+bx+c
Since points A,B and C lies on the curve ∴4a−2b+c=3,a−b+c=1,4a+2b+c=7 Solving the equations we get a=b=c=1 Thus y=x2+x+1 A) Value ofa+b+c=3
B) Let α=ω,β=ω2 Thus α7+β19=ω+ω2=−1 C) (a+2)x2+2(b+2)x+c 3x2+6x+1 Let g(x)=3x2+6x g′(x)=6x−6x2 g′(x)=0⇒x=1 L=3+6+1=10 L−3=7 D) To maximize area of □ABCD we maximize area (ΔBCD) To maximize Area (ΔBCD) we have to maximize h (as shown in figure) for maximum h ⇒ Slope of BD= Slope of tangent at C 7−12+1=(2x+1) x=12⇒y=14+12+1=74