Four squares plates A,B,C and D having densities σ1,σ2,σ3 and σ4 are kept as shown in figure. If σ1=0.5σ2;σ2=2σ3;σ3=σ44, then location of centre of mass of the system is given by
A
(9L16,9L8)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(7L8,9L8)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(11L16,9L8)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(9L8,9L8)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(7L8,9L8) Given σ1,σ2,σ3 and σ4 be the densities of four squares.
Given, σ1=0.5σ2 σ2=2σ3 σ3=σ44
Let σ1=σ (say) ⇒σ2=2σ σ3=σ σ4=4σ
Density (σ)=mA⇒m=σA
From figure:
COM of square A(x1,y1)=(L2,L2)
COM of square B(x2,y2)=(3L2,L2)
COM of square C(x3,y3)=(3L2,3L2)
COM of square D(x4,y4)=(L2,3L2)
Let (xcm,ycm) be the co-ordinates of COM of system. xcm=m1x1+m2x2+m3x3+m4x4m1+m2+m3+m4
=[σ(L2)+2σ(3L2)+σ(3L2)+4σ(L2)]A[σ+2σ+σ+4σ]A
=L2+3L+3L2+2L8 =7L8m
ycm=m1y1+m2y2+m3y3+m4y4m1+m2+m3+m4 =σA(L2)+2σA(L2)+σA(3L2)+4σA(3L2)8σA =L2+L+3L2+6L8 =9L8m
Location of COM (xcm,ycm)=(7L8,9L8)