X(ω)=∫∞−∞x(t)e−jωtdt
Where, x(t)=e−b2t2(b=2)
X(ω)=∫∞−∞e−b2t2−jωtdt
Substituting b2t2+jωt=(bt+jω2b)2+ω24b2
∴X(ω)=∫∞−∞e⎛⎝bt+jω2b⎞⎠2e(−ω24b2)dt
Substituting u=bt+jω2b
du=bdt
X(ω)=e−ω24b2.2b∫∞0e−u2du
∵∫∞0e−u2du=√π2
∴X(ω)=√πb.e−ω24b2=√πb.e⎛⎜⎝−πfb⎞⎟⎠2
∴A=√πb=√π2=0.8862=0.886