11.6+16.11+111.16+116.21+...+1(5n−4)(5n+1)
We have, 11.6+16.11+111.16+116.21+...+1(5n−4)(5n+1)
Let Trbe the rth term of the given series. Then,
Tr=1(5r−4)(5r+1),r=1,2,....,n ⇒ Tr=15[15r−2−15r+1]∴ required sum = 15∑nr−1Tr=15∑nr−1[15r−4−15r+1]=15[(1−16)+(16−111)+(111−114)...(15n−4−15n+1)]=15[1−15n+1]=15[5n+1−15n+1]=15×5n5n+1=n5n+1Hence, required sum = n5n+1