11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=__________.
The correct option is B 2
We have
11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9
Rationalising the numerator and denominator of each term, we get
1−√21−2+√2−√32−3+√3−√43−4+√4−√54−5+√5−√65−6+√6−√76−7+√7−√87−8+√8−38−9
[∵11+√2=1×(1−√2)(1+√2)(1−√2)=1−√21−2 ]
=−1+√2−√2+√3−√3+√4−√4+√5−√5+√6−√6+√7−√7+√8−√8+3
=−1+3
=2