(13×5)=((13)−(15))×(12)(15×7)=((15)−(17))×(12)∴sum=(12)[((13)−(15)+(15)−(17)+......((12n+1)−(12n+3))]=(12)[(13)−(12n+3)]=(12)(2n+3−33(2n+3))=(n3(2n+3))
13.5+15.7+17.9+......+1(2n+1)(2n+3)=n3(2n+3)
Prove 13.5+15.7+17.9+⋯+1(2n+1)(2n+3)=n3(2n+3)
Prove the following by using the principle of mathematical induction for all n ∈ N: